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Organic thin-film transistors (OTFTs) based on molecular and poly-
meric semiconductors have attracted great scientific interest in the quest
for “plastic” electronics.1 The typical OTFT structure includes the source,
drain, and gate contacts, a semiconductor layer, and a dielectric layer
separating the gate from the semiconductor (Figure 1 for a bottom-gate
device). Depending on the semiconductor majority charge transport
efficiencies, the OTFT functions as a p-channel (hole-transporter)2 or
n-channel (electron-transporter)3 switch. The key device performance
parameters include the field-effect mobility (µ) and the current on-off
ratio (Ion:Ioff). To enable OTFT-based applications, these parameters should
surpass those of amorphous silicon for devices fabricated/functioning in
ambient.1 Several p- and n-channel molecular semiconductors have
achieved acceptable device performance and stability. For example, OTFTs
based on acenes and oligothiophenes (p-channel) and perylenes (n-channel)
exhibit µ> 0.5 cm2/V ·s in ambient.1-3 In recent years, high-performance
p-channel polymers with µ > 0.1 cm2/V ·s have been discovered, with
those based on the thiophene core being by far the most investigated.4

Despite impressive progress,5 n-channel polymers for OTFTs remain
problematic due to poor processability and/or negligible electron mobilities
in ambient conditions.

Among the most interesting electron-depleted cores used for
n-channel polymer building blocks, perylenes have demonstrated the
greatest potential.5a,b TFTs based on these polymers exhibit very
promising electron mobilities in vacuum (0.001-0.02 cm2/V · s);
unfortunately, the corresponding devices do not operate in ambient.5a,b

These fundamental results prompted us to design and explore new
electron-depleted rylene-based polymers to enable high-performance
n-channel polymeric TFTs. Here we report the synthesis and charac-
terization of a N,N′-dialkylperylenedicarboximide-dithiophene (PDIR-
T2) and N,N′-dialkylnaphthalenedicarboximide-dithiophene (NDIR-
T2) copolymers and the fabrication of the corresponding bottom-gate
TFTs on Si-SiO2 substrates. To establish structure-property correla-
tions within the rylene-based polymer family, the corresponding formal
rylene NDIR and PDIR co-monomers were synthesized as well. Our
results demonstrate that the choice of the NDIR vs PDIR co-monomer
is strategic to achieve both high-performance n-channel TFTs and
stable device operation in ambient conditions.

Following are the rylene building block and the polymer structural
design rationale: (i) The electron-poor NDIR co-monomer was selected
because of the large electron affinity of this core, comparable to that

of the far more π-extended PDIR systems.3d (ii) Equally important,
NDIR-Br2 can be easily isolated as pure 2,6-diastereoisomers,6a

enabling the synthesis of a regioregular polymeric backbone. Note that
isolation of PDIR-Br2 regioisomers is tedious.6b Therefore, compared
to PDIR-based polymers, it should lead to a more π-conjugated
structure and, consequently, better charge transport efficiencies. (iii)
Proper alkyl (R) functionalization at the rylene nitrogen atoms, here
2-octyldodecyl (2OD), should result in highly soluble and processable,
yet charge transport-efficient, polymers. (iv) The dithiophene (T2) unit
is utilized because of the commercial availability, stability, and known
electronic structure and geometric characteristics of this core,7 likely
providing highly conjugated, planar, and rod-like polymers.

The new NDIR- and PDIR-based polymers [poly{[N,N′-bis(2-octyl-
dodecyl)-1,4,5,8-naphthalenedicarboximide-2,6-diyl]-alt-5,5′-(2,2′-
bithiophene)}, P(NDI2OD-T2) (Polyera ActivInk N2200), and poly{[N,N′-
bis(2-octyldodecyl)-3,4,9,10-perylenedicarboximide-(1,7&1,6)-diyl]-alt-
5,5′-(2,2′-bithiophene)} P(PDI2OD-T2)] were synthesized in high yields
via a Pd-catalyzed Stille polymerization (according to Scheme 1 whereas
synthetic details of NDI2OD and PDI2OD are reported in the Supporting
Information).Thenewpolymerswerepurifiedbymultipledissolution-precipitation
procedures whereas NDI2OD and PDI2OD were by column chroma-
tography and characterized by elemental analysis, gel permeation chro-
matography, and 1H NMR spectroscopy. Using the reported synthetic
procedure, polymer Mw’s are larger for P(NDI2OD-T2) (∼250K, PD ∼
5) than for P(PDI2OD-T2) (∼32K, PD ∼ 3).

The optical and electrochemical properties of these new systems reveal
important aspects of the polymer electronic structures and NDIR vs PDIR
co-monomer effects. The thin-film polymer optical absorption spectra
exhibits two/three main absorptions located at λmax ) 697/391 nm for

Figure 1. Schematic representation of the OTFT components and bottom-
gate device structure investigated in this study. (i) Dielectric surface treatment;
(ii) polymer spin-coating; (iii) Au contact deposition.

Scheme 1. Synthesis of P(NDI2OD-T2) and P(PDI2OD-T2)
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P(NDI2OD-T2) and λmax ) 594/540/360 nm for P(PDI2OD-T2)
(Figure 2A). The corresponding (optical) energy gaps (Eg) are estimated
from the spectrum low-absorption band edge as ∼1.45 and 1.65 eV,
respectively. Note that the Eg contraction (∆Eg) on going from the formal
NDI2OD and PDI2OD rylene monomer units (Eg ≈ 3.0 and 2.4 eV,
respectively) to the corresponding polymers is far larger for P(NDI2OD-
T2) (∆Eg ≈ 1.65 eV) than P(PDI2OD-T2) (∆Eg ≈ 0.75 eV). The low
Eg and the large ∆Eg for P(NDI2OD-T2) corroborate the extended/
regioregular π-conjugated backbone and the efficient donor (T2)-acceptor
(NDI) nature of this polymer when compared to regioirregular P(NDI2OD-
T2). Polymer thin-film cyclic voltammetry plots exhibit two reversible
reductions (Figure 2B), with the first/second reduction potentials located
at -0.49/-0.96 V for P(NDI2OD-T2) and at -0.44/-0.80V for
P(PDI2OD-T2). By combining solid-state optical and electrochemical
data, the HOMO/LUMO energies (EH/EL) are found to be -5.36/-3.91
eV for P(NDI2OD-T2) and-5.61/-3.96 eV for P(PDI2OD-T2). From
previously established LUMO energy-stability correlations, EL values are
borderline for TFT ambient operation.3d Interestingly, when comparing
rylene monomer vs polymer MO energies (Figure 2C), EL’s are structure-
independent, whereas EH’s vary considerably. MO computations may shed
light on these interesting trends; however, it is likely that they reflect the
interplay between MOs’ localization (LUMO primarily on the dicarbox-
imide acceptor units and HOMO within the T2-arene polymeric backbone),
NDI vs PDI core extension, and degree of polymer chain π-conjugation,
as seen in donor-acceptor copolymers.8

Bottom-gate top-contact OTFTs were fabricated on n2+-Si/SiO2/
OTS substrates on which the semiconducting polymer solutions
(∼3-10 mg/mL in DCB-CHCl3) were spin-coated to afford ∼100-
nm-thick films. The films were annealed at 110 °C for 4 h before the
TFT structure was completed by Au source/drain vapor deposition
(Figure 1). Electrical measurements were performed both under high
vacuum and in ambient. I-V plots are shown in Figure 3, with µ
calculated in saturation from the equation µ ) (2ISDL)/[WCi(VSG -
Vth)2]. The positive gate and source-drain voltages show that these
polymers are n-channel semiconductors. Electron mobilities of ∼0.06
cm2/V · s for P(NDI2OD-T2) and ∼0.002 cm2/V · s for P(PDI2OD-
T2) are measured in a vacuum. However, when the same TFT array
is measured in ambient, the P(NDI2OD-T2)-based devices function
14 weeks after fabrication (µ ≈ 0.01 cm2/V · s), while the mobility of
P(PDI2OD-T2) drops to ∼2 × 10-4 cm2/V · s within 1 week, in
agreement with previous studies.5 To our knowledge, P(NDI2OD-
T2) is one of the very few n-channel polymers with good performance
in ambient. Because of the good P(NDI2OD-T2)-based TFT electron
injection characteristics from high workfunction contacts (Au), this
material may open the door for all-polymer-based complementary
circuits.

In summary, we have reported new rylene-based compounds for
TFTs and demonstrated that the selection of the rylene electron-poor

unit is essential to achieve high Mw, excellent π-conjugation, and good
TFT performance in ambient conditions. Studies are underway of the
effect of polymer regioregularity vs TFT performance and to enhance
µ by N-substituent variations, co-monomer selection, and use of
different dielectric materials and TFT structure.9
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Figure 2. (A) Optical absorption spectra of spin-coated P(NDI2OD-T2)
(red line) and P(PDI2OD-T2) (blue line) films (∼30 nm thick) on glass.
(B) Thin-film cyclic voltammetries [Fc (+0.54 V vs SCE) internal standard)]
of P(NDI2OD-T2) (red line) and P(PDI2OD-T2) (blue line) thin films on
a Pt electrode. The ER1 values of NDI2OD and PDI2OD (not shown) are
-0.49 and 0.46 V vs SCE, respectively. (C) Energy diagram for the specified
rylene monomers and polymers.

Figure 3. I-V transfer plots for (A) P(NDI2OD-T2) TFT in air for 1 h
and (B) P(PDI2OD-T2) TFT in vacuum. (C) Polymer TFT electron mobility
plots in vacuum and ambient (RH ) 20-40%, T ≈ 25 °C) vs time.
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